Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Birth Defects Res ; 116(2): e2311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343152

RESUMO

The Health and Environmental Sciences Institute Developmental and Reproductive Toxicology (HESI-DART) group held a hybrid in-person and virtual workshop in Washington, DC, in 2022. The workshop was entitled, "Interpretation of DART in Regulatory Contexts and Frameworks." There were 154 participants (37 in person and 117 virtual) across 9 countries. The purpose of the workshop was to capture key consensus approaches used to assess DART risks associated with chemical product exposure when a nonclinical finding is identified. The decision-making process for determining whether a DART endpoint is considered adverse is critical because the outcome may have downstream implications (e.g., increased animal usage, modifications to reproductive classification and pregnancy labeling, impact on enrollment in clinical trials and value chains). The workshop included a series of webinar modules to train and engage in discussions with federal and international regulators, clinicians, academic investigators, nongovernmental organizations, contract research organization scientists, and private sector scientists on the best practices and principles of interpreting DART and new approach methodologies in the context of regulatory requirements and processes. Despite the differences in regulatory frameworks between the chemical and pharmaceutical sectors, the same foundational principles for data interpretation should be applied. The discussions led to the categorization of principles, which offer guidance for the systematic interpretation of data. Step 1 entails identifying any hazard by closely analyzing the data at the study endpoint level, while Step 2 involves assessing risk using weight of evidence. These guiding principles were derived from the collective outcomes of the workshop deliberations.


Assuntos
Reprodução , Animais , Gravidez , Feminino , Humanos , Medição de Risco/métodos
2.
Expert Opin Drug Metab Toxicol ; 19(7): 461-477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470686

RESUMO

INTRODUCTION: Perinatal asphyxia (PA) still causes significant morbidity and mortality. Therapeutic hypothermia (TH) is the only effective therapy for neonates with moderate to severe hypoxic-ischemic encephalopathy after PA. These neonates need additional pharmacotherapy, and both PA and TH may impact physiology and, consequently, pharmacokinetics (PK) and pharmacodynamics (PD). AREAS COVERED: This review provides an overview of the available knowledge in PubMed (until November 2022) on the pathophysiology of neonates with PA/TH. In vivo pig models for this setting enable distinguishing the effect of PA versus TH on PK and translating this effect to human neonates. Available asphyxia pig models and methodological considerations are described. A summary of human neonatal PK of supportive pharmacotherapy to improve neurodevelopmental outcomes is provided. EXPERT OPINION: To support drug development for this population, knowledge from clinical observations (PK data, real-world data on physiology), preclinical (in vitro and in vivo (minipig)) data, and molecular and cellular biology insights can be integrated into a predictive physiologically-based PK (PBPK) framework, as illustrated by the I-PREDICT project (Innovative physiology-based pharmacokinetic model to predict drug exposure in neonates undergoing cooling therapy). Current knowledge, challenges, and expert opinion on the future directions of this research topic are provided.


Assuntos
Asfixia , Hipotermia Induzida , Humanos , Animais , Recém-Nascido , Suínos , Modelos Biológicos , Porco Miniatura , Desenvolvimento de Medicamentos , Farmacocinética
3.
Front Pharmacol ; 14: 1177541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124224

RESUMO

Despite considerable progress in understanding drug metabolism in the human pediatric population, data remains scarce in preterm neonates. Improving our knowledge of the ADME properties in this vulnerable age group is of utmost importance to avoid suboptimal dosing, which may lead to adverse drug reactions. The juvenile (mini)pig is a representative model for hepatic drug metabolism in human neonates and infants, especially phase I reactions. However, the effect of prematurity on the onset of hepatic phase I and phase II enzyme activity has yet to be investigated in this animal model. Therefore, the aim of this study was to assess the ontogeny of CYP3A and UGT enzyme activity in the liver of preterm (gestational day 105-107) and term-born (gestational day 115-117) domestic piglets. In addition, the ontogeny pattern between the preterm and term group was compared to examine whether postconceptional or postnatal age affects the onset of enzyme activity. The following age groups were included: preterm postnatal day (PND) 0 (n = 10), PND 5 (n = 10), PND 11 (n = 8), PND 26 (n = 10) and term PND 0 (n = 10), PND 5 (n = 10), PND 11 (n = 8), PND 19 (n = 18) and PND 26 (n = 10). Liver microsomes were extracted, and the metabolism of CYP3A and UGT-specific substrates assessed enzyme activity. Preterm CYP3A activity was only detectable at PND 26, whereas term CYP3A activity showed a gradual postnatal increase from PND 11 onwards. UGT activity gradually increased between PND 0 and PND 26 in preterm and term-born piglets, albeit, being systematically lower in the preterm group. Thus, postconceptional age is suggested as the main driver affecting porcine CYP3A and UGT enzyme ontogeny. These data are a valuable step forward in the characterization of the preterm piglet as a translational model for hepatic drug metabolism in the preterm human neonate.

4.
Front Pediatr ; 11: 1163100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215599

RESUMO

Animal models provide useful information on mechanisms in human disease conditions, but also on exploring (patho)physiological factors affecting pharmacokinetics, safety, and efficacy of drugs in development. Also, in pediatric patients, nonclinical data can be critical for better understanding the disease conditions and developing new drug therapies in this age category. For perinatal asphyxia (PA), a condition defined by oxygen deprivation in the perinatal period and possibly resulting in hypoxic ischemic encephalopathy (HIE) or even death, therapeutic hypothermia (TH) together with symptomatic drug therapy, is the standard approach to reduce death and permanent brain damage in these patients. The impact of the systemic hypoxia during PA and/or TH on drug disposition is largely unknown and an animal model can provide useful information on these covariates that cannot be assessed separately in patients. The conventional pig is proven to be a good translational model for PA, but pharmaceutical companies do not use it to develop new drug therapies. As the Göttingen Minipig is the commonly used pig strain in nonclinical drug development, the aim of this project was to develop this animal model for dose precision in PA. This experiment consisted of the instrumentation of 24 healthy male Göttingen Minipigs, within 24 h of partus, weighing approximately 600 g, to allow the mechanical ventilation and the multiple vascular catheters inserted for maintenance infusion, drug administration and blood sampling. After premedication and induction of anesthesia, an experimental protocol of hypoxia was performed, by decreasing the inspiratory oxygen fraction (FiO2) at 15%, using nitrogen gas. Blood gas analysis was used as an essential tool to evaluate oxygenation and to determine the duration of the systemic hypoxic insult to approximately 1 h. The human clinical situation was mimicked for the first 24 h after birth in case of PA, by administering four compounds (midazolam, phenobarbital, topiramate and fentanyl), frequently used in a neonatal intensive care unit (NICU). This project aimed to develop the first neonatal Göttingen Minipig model for dose precision in PA, allowing to separately study the effect of systemic hypoxia versus TH on drug disposition. Furthermore, this study showed that several techniques that were thought to be challenging or even impossible in these very small animals, such as endotracheal intubation and catheterization of several veins, are feasible by trained personnel. This is relevant information for laboratories using the neonatal Göttingen Minipig for other disease conditions or drug safety testing.

5.
PLoS One ; 18(5): e0286455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235602

RESUMO

Monitoring chronic stress in pigs is not only essential in view of animal welfare but is also important for the farmer, given that stress influences the zootechnical performance of the pigs and increases their susceptibility to infectious diseases. To investigate the use of saliva as a non-invasive, objective chronic stress monitoring tool, twenty-four 4-day-old piglets were transferred to artificial brooders. At the age of 7 days, they were assigned to either the control or the stressed group and reared for three weeks. Piglets in the stressed group were exposed to overcrowding, absence of cage enrichment, and frequent mixing of animals between pens. Shotgun analysis using an isobaric labelling method (iTRAQ) for tandem mass spectrometry performed on saliva samples taken after three weeks of chronic stress identified 392 proteins, of which 20 proteins displayed significantly altered concentrations. From these 20 proteins, eight were selected for further validation using parallel reaction monitoring (PRM). For this validation, saliva samples that were taken one week after the start of the experiment and samples that were taken at the end of the experiment were analysed to verify the profile over time. We wanted to investigate whether the candidate biomarkers responded fast or rather slowly to the onset of chronic exposure to multiple stressors. Furthermore, this validation could indicate whether age influenced the baseline concentrations of these salivary proteins, both in healthy and stressed animals. This targeted PRM analysis confirmed that alpha-2-HS-glycoprotein was upregulated in the stressed group after one and three weeks, while odorant-binding protein, chitinase, long palate lung and nasal epithelium protein 5, lipocalin-1, and vomeromodulin-like protein were present in lower concentrations in the saliva of the stressed pigs, albeit only after three weeks. These results indicate that the porcine salivary proteome is altered by chronic exposure to multiple stressors. The affected proteins could be used as salivary biomarkers to identify welfare problems at the farm and facilitate research to optimise rearing conditions.


Assuntos
Proteoma , Proteínas e Peptídeos Salivares , Animais , Suínos , Proteoma/metabolismo , Biomarcadores/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Saliva/metabolismo , Bem-Estar do Animal
6.
Pharmaceutics ; 15(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37111598

RESUMO

Antisense oligonucleotide (ASO) is a therapeutic modality that enables selective modulation of undruggable protein targets. However, dose- and sequence-dependent platelet count reductions have been reported in nonclinical studies and clinical trials. The adult Göttingen minipig is an acknowledged nonclinical model for ASO safety testing, and the juvenile Göttingen minipig has been recently proposed for the safety testing of pediatric medicines. This study assessed the effects of various ASO sequences and modifications on Göttingen minipig platelets using in vitro platelet activation and aggregometry assays. The underlying mechanism was investigated further to characterize this animal model for ASO safety testing. In addition, the protein abundance of glycoprotein VI (GPVI) and platelet factor 4 (PF4) was investigated in the adult and juvenile minipigs. Our data on direct platelet activation and aggregation by ASOs in adult minipigs are remarkably comparable to human data. Additionally, PS ASOs bind to platelet collagen receptor GPVI and directly activate minipig platelets in vitro, mirroring the findings in human blood samples. This further corroborates the use of the Göttingen minipig for ASO safety testing. Moreover, the differential abundance of GPVI and PF4 in minipigs provides insight into the influence of ontogeny in potential ASO-induced thrombocytopenia in pediatric patients.

7.
Mol Reprod Dev ; 90(7): 697-707, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652465

RESUMO

Intrauterine growth restriction (IUGR) is frequently observed in pig production, especially when using highly prolific sows. IUGR piglets are born with low body weight and shape indicative of differences in organ growth. Insufficient uteroplacental nutrient transfer to the fetuses is the leading cause of growth restriction in the pig. Supplementing the sow's gestation diet with arginine and/or glutamine improves placenta growth and functionality and consequently is able to reduce IUGR incidence. IUGR piglets are at higher risk of dying preweaning and face higher morbidity than their normal-weight littermates. A high level of surveillance during farrowing and individual nutrient supplementation can reduce the mortality rates. Still, these do not reverse the long-term consequences of IUGR, which are induced by persistent structural deficits in different organs. Dietary interventions peri-weaning can optimize performance but these are less effective in combating the metabolic changes that occurred in IUGR, which affect reproductive performance later in life. IUGR piglets share many similarities with IUGR infants, such as a poorer outcome of males. Using the IUGR piglet as an animal model to further explore the structural and molecular basis of the long-term consequences of IUGR and the potential sex bias could aid in fully understanding the impact of prenatal undernutrition and finding solutions for both species and sexes.


Assuntos
Retardo do Crescimento Fetal , Desnutrição , Humanos , Gravidez , Masculino , Animais , Suínos , Feminino , Peso ao Nascer , Dieta/veterinária , Placenta
8.
Animals (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36611673

RESUMO

Introducing hyperprolific sows has led to proportionally more (very) low birth weight ((V)LBW) piglets, accompanied by higher mortality. To improve the survival of (V)LBW piglets, drenching a dense milk replacer (DMR) could be applied. A first experiment evaluated the effect of drenching DMR (1 or 3 doses within 24 h after birth) to LBW ((mean litter birth weight - 1*SD) and weighing between 1 kg and 750 g) and VLBW piglets ((mean litter birth weight - 1.5*SD) and weighing less than 750 g). On days 1, 2, 3, 9, and two days post-weaning, body weight, growth, skin lesions, and mortality were monitored. No effect of DMR was observed on any of the parameters. In a second experiment, LBW piglets were supplemented with DMR (similarly to experiment 1) at two farms differing in the level of perinatal care. The same parameters were evaluated, and again none were affected by drenching DMR. Overall survival of the LBW piglets was significantly higher at the farm with high perinatal care. It can be concluded that good perinatal management is more effective in enhancing the survival of LBW piglets than drenching.

9.
Reprod Toxicol ; 107: 1-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757165

RESUMO

Species differences in developmental toxicity can be due to varying expression of xenobiotic transporters. Hence, knowledge on the ontogeny of these transporters, especially in human, rat and rabbit, is pivotal. Two superfamilies of transporters, the ATP-binding cassette (ABC) and the solute carrier (SLC) transporters, are well known for their role in the absorption, distribution and/or elimination of xenobiotics and endogenous substances. The aim of this study was to compare the expression levels of these xenobiotic transporters in liver, kidney and placenta of man, Wistar rat and New Zealand White rabbit during pre- and postnatal development. For this purpose, qPCR experiments were performed for rat and rabbit tissues and the gene expression profiles were compared with literature data from man, rat and rabbit. Data analysis showed large differences in transporter expression in development and between species. These results can be used to better understand developmental toxicity findings in non-clinical species and their relevance for man.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Rim/metabolismo , Fígado/metabolismo , Placenta/metabolismo , Proteínas Carreadoras de Solutos/genética , Animais , Embrião de Mamíferos , Feminino , Feto , Humanos , Masculino , Gravidez , Coelhos , Ratos Wistar , Especificidade da Espécie
10.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884510

RESUMO

The zebrafish (Danio rerio) embryo is gaining interest as a bridging tool between in-vitro and in-vivo developmental toxicity studies. However, cytochrome P450 (CYP)-mediated drug metabolism in this model is still under debate. Therefore, we investigated the potential of zebrafish embryos and larvae to bioactivate two known anti-epileptics, carbamazepine (CBZ) and phenytoin (PHE), to carbamazepine-10,11-epoxide (E-CBZ) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH), respectively. First, zebrafish were exposed to CBZ, PHE, E-CBZ and HPPH from 5»- to 120-h post fertilization (hpf) and morphologically evaluated. Second, the formations of E-CBZ and HPPH were assessed in culture medium and in whole-embryo extracts at different time points by targeted LC-MS. Finally, E-CBZ and HPPH formation was also assessed in adult zebrafish liver microsomes and compared with those of human, rat, and rabbit. The present study showed teratogenic effects for CBZ and PHE, but not for E-CBZ and HPPH. No HPPH was detected during organogenesis and E-CBZ was only formed at the end of organogenesis. E-CBZ and HPPH formation was also very low-to-negligible in adult zebrafish compared with the mammalian species. As such, other metabolic pathways than those of mammals are involved in the bioactivation of CBZ and PHE, or, these anti-epileptics are teratogens and do not require bioactivation in the zebrafish.


Assuntos
Anticonvulsivantes/toxicidade , Biotransformação , Embrião não Mamífero/patologia , Desenvolvimento Embrionário , Larva/crescimento & desenvolvimento , Microssomos Hepáticos/patologia , Organogênese , Animais , Embrião não Mamífero/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Teratógenos/toxicidade , Peixe-Zebra
11.
J Vis Exp ; (175)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34633365

RESUMO

Atrial fibrillation (AF) is the most common arrhythmia caused by structural remodeling of the atria, also called atrial myopathy. Current therapies only target the electrical abnormalities and not the underlying atrial myopathy. For the development of novel therapies, a reproducible large animal model of atrial myopathy is necessary. This paper presents a model of sterile pericarditis-induced atrial myopathy in Aachener minipigs. Sterile pericarditis was induced by spraying sterile talcum and leaving a layer of sterile gauze over the atrial epicardial surface. This led to inflammation and fibrosis, two crucial components of the pathophysiology of atrial myopathy, making the atria susceptible to the induction of AF. Two pacemaker electrodes were positioned epicardially on each atrium and connected to two pacemakers from different manufacturers. This strategy allowed for repeated non-invasive atrial programmed stimulation to determine the inducibility of AF at specified time points after surgery. Different protocols to test AF inducibility were used. The advantages of this model are its clinical relevance, with AF inducibility and the rapid induction of inflammation and fibrosis-both present in atrial myopathy-and its reproducibility. The model will be useful in the development of novel therapies targeting atrial myopathy and AF.


Assuntos
Fibrilação Atrial , Doenças Musculares , Pericardite , Animais , Fibrilação Atrial/etiologia , Pericardite/etiologia , Reprodutibilidade dos Testes , Suínos , Porco Miniatura
12.
Front Pediatr ; 9: 731877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692609

RESUMO

Background: Preterm infants frequently show neuromotor dysfunctions, but it is not clear how reduced gestational age at birth may induce developmental coordination disorders. Advancing postnatal age, not only post-conceptional age, may determine neuromuscular development, and early interventions in preterm newborns may improve their later motor skills. An animal model of preterm birth that allows early postnatal detection of movement patterns may help to investigate this hypothesis. Methods: Using pigs as a model for moderately preterm infants, preterm (106-day gestation, equivalent to 90% of normal gestation time; n = 38) and term (115-day gestation, equivalent to 99% of normal gestation time; n = 20) individuals were delivered by cesarean section and artificially reared until postnatal day 19 (preweaning period). The neuromotor skills of piglets were documented using spatiotemporal gait analyses on video recordings of locomotion at self-selected speed at postnatal age 3, 4, 5, 8, and 18 days. Results were controlled for effects of body weight and sex. Results: Both preterm and term piglets reached mature neuromotor skills and performance between postnatal days 3-5. However, preterm pigs took shorter steps at a higher frequency, than term piglets, irrespective of their body size. Within preterm pigs, males and low birth weight individuals took the shortest steps, and with the highest frequency. Conclusion: Postnatal development of motor skills and gait characteristics in pigs delivered in late gestation may show similarity to the compromised development of gait pattern in preterm infants. Relative to term pigs, the postnatal delay in gait development in preterm pigs was only few days, that is, much shorter than the 10-day reduction in gestation length. This indicates rapid postnatal adaptation of gait pattern after reduced gestational age at birth. Early-life physical training and medical interventions may support both short- and long-term gait development after preterm birth in both pigs and infants.

13.
Pharmaceutics ; 13(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575518

RESUMO

The adult Göttingen Minipig is an acknowledged model for safety assessment of antisense oligonucleotide (ASO) drugs developed for adult indications. To assess whether the juvenile Göttingen Minipig is also a suitable nonclinical model for pediatric safety assessment of ASOs, we performed an 8-week repeat-dose toxicity study in different age groups of minipigs ranging from 1 to 50 days of age. The animals received a weekly dose of a phosphorothioated locked-nucleic-acid-based ASO that was assessed previously for toxicity in adult minipigs. The endpoints included toxicokinetic parameters, in-life monitoring, clinical pathology, and histopathology. Additionally, the ontogeny of key nucleases involved in ASO metabolism and pharmacologic activity was investigated using quantitative polymerase chain reaction and nuclease activity assays. Similar clinical chemistry and toxicity findings were observed; however, differences in plasma and tissue exposures as well as pharmacologic activity were seen in the juvenile minipigs when compared with the adult data. The ontogeny study revealed a differential nuclease expression and activity, which could affect the metabolic pathway and pharmacologic effect of ASOs in different tissues and age groups. These data indicate that the juvenile Göttingen Minipig is a promising nonclinical model for safety assessment of ASOs intended to treat disease in the human pediatric population.

14.
Metabolites ; 11(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34564451

RESUMO

Metabolomics has achieved great progress over the last 20 years, and it is currently considered a mature research field. As a result, the number of applications in toxicology, biomarker, and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy to provide complementary information to study molecular-level toxic effects, which can be combined with a wide range of toxicological assessments and models. The zebrafish model has gained importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and features highly conserved metabolic pathways found in humans and mammalian models, it is a promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers interested in understanding the effects of chemical exposure using metabolomics to the challenges and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry. The overall goal is to provide insights into analytical strategies to generate and identify high-quality metabolomic experiments focusing on quality management systems (QMS) and the importance of data reporting and sharing.

15.
Regul Toxicol Pharmacol ; 126: 105029, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34455009

RESUMO

In drug development, nonclinical safety assessment is pivotal for human risk assessment and support of clinical development. Selecting the relevant/appropriate animal species for toxicity testing increases the likelihood of detecting potential effects in humans, and although recent regulatory guidelines state the need to justify or dis-qualify animal species for toxicity testing, individual companies have developed decision-processes most appropriate for their molecules, experience and 3Rs policies. These generally revolve around similarity of metabolic profiles between toxicology species/humans and relevant pharmacological activity in at least one species for New Chemical Entities (NCEs), whilst for large molecules (biologics) the key aspect is similarity/presence of the intended human target epitope. To explore current industry practice, a questionnaire was developed to capture relevant information around process, documentation and tools/factors used for species selection. Collated results from 14 companies (Contract Research Organisations and pharmaceutical companies) are presented, along with some case-examples or over-riding principles from individual companies. As the process and justification of species selection is expected to be a topic for continued emphasis, this information could be adapted towards a harmonized approach or best practice for industry consideration.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica/métodos , Modelos Animais , Testes de Toxicidade/métodos , Produtos Biológicos/toxicidade , Indústria Farmacêutica/normas , Especificidade da Espécie , Testes de Toxicidade/normas
16.
Front Pharmacol ; 12: 665644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935788

RESUMO

The Göttingen Minipig is gaining ground as nonrodent species in safety testing of drugs for pediatric indications. Due to developmental changes in pharmacokinetics and pharmacodynamics, physiologically based pharmacokinetic (PBPK) models are built to better predict drug exposure in children and to aid species selection for nonclinical safety studies. These PBPK models require high quality physiological and ADME data such as protein abundance of drug metabolizing enzymes. These data are available for man and rat, but scarce for the Göttingen Minipig. The aim of this study was to assess hepatic cytochrome P450 (CYP) protein abundance in the developing Göttingen Minipig by using mass spectrometry. In addition, sex-related differences in CYP protein abundance and correlation of CYP enzyme activity with CYP protein abundance were assessed. The following age groups were included: gestational day (GD) 84-86 (n = 8), GD 108 (n = 6), postnatal day (PND) 1 (n = 8), PND 3 (n = 8), PND 7 (n = 8), PND 28 (n = 8) and adult (n = 8). Liver microsomes were extracted and protein abundance was compared to that in adult animals. Next, the CYP protein abundance was correlated to CYP enzyme activity in the same biological samples. In general, CYP protein abundance gradually increased during development. However, we observed a stable protein expression over time for CYP4A24 and CYP20A1 and for CYP51A1, a high protein expression during the fetal stages was followed by a decrease during the first month of life and an increase toward adulthood. Sex-related differences were observed for CYP4V2_2a and CYP20A1 at PND 1 with highest expression in females for both isoforms. In the adult samples, sex-related differences were detected for CYP1A1, CYP1A2, CYP2A19, CYP2E1_2, CYP3A22, CYP4V2_2a and CYP4V2_2b with higher values in female compared to male Göttingen Minipigs. The correlation analysis between CYP protein abundance and CYP enzyme activity showed that CYP3A22 protein abundance correlated clearly with the metabolism of midazolam at PND 7. These data are remarkably comparable to human data and provide a valuable step forward in the construction of a neonatal and juvenile Göttingen Minipig PBPK model.

17.
FASEB J ; 35(4): e21522, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734504

RESUMO

Intestinal development is compromised in low birth weight (LBW) pigs, negatively impacting their growth, health, and resilience. We investigated the molecular mechanisms of the altered intestinal maturation observed in neonatal and juvenile LBW female piglets by comparing the changes in intestinal morphology, gene expression, and methylation in LBW versus normal birth weight (NBW) female piglets. A total of 16 LBW/NBW sibling pairs were sacrificed at 0 hours, 8 hours, 10 days, and 8 weeks of age. The gastrointestinal tract was weighed, measured, and the small intestine was sampled for histomorphology, gene expression, and methylation analyses. Impaired intestinal development, with shorter villi and shallower crypts, was observed in LBW female piglets. The expression of intestinal development markers (ALPI and OLFM) rapidly peaked after birth in NBW but not in LBW female piglets. The lower expression of genes involved in nutrient digestion (ANPEP and SI) and barrier function (OCLN and CLDN4) in LBW, together with their delayed development of intestinal villi and crypts could help to explain the compromised health and growth potential of LBW female piglets. The changes in methylation observed in LBW in key regulators of intestinal development (OLFM4 and FZD5) suggest long-term effects of BW on intestinal gene expression, development, and function. Accordingly, experimental demethylation induced in IPEC-J2 cells led to increased expression of intestinal genes (MGA, DPP4, and GLUT2). Overall, we have identified the alterations in transcription or epigenetic marking at a number of genes critical to intestinal development, which may contribute to both the short- and long-term failure of LBW female piglets to thrive.


Assuntos
Expressão Gênica/fisiologia , Recém-Nascido de Baixo Peso/fisiologia , Intestino Delgado/metabolismo , Intestinos/crescimento & desenvolvimento , Animais , Peso ao Nascer/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Intestino Delgado/crescimento & desenvolvimento , Sus scrofa/fisiologia , Suínos
18.
Animals (Basel) ; 11(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562568

RESUMO

The increase in litter sizes in recent years has resulted in more low birth weight (LBW) piglets, accompanied by a higher mortality. A potential intervention to overcome this is drenching bioactive substances. However, if the act of drenching provokes additional stress in LBW piglets, it might counteract the supplement's effect and be detrimental for the piglet's survival. To study the effect of the drenching act, piglets from 67 sows were weighed within 4 h after birth. The mean litter birth weight (MLBW) and standard deviation (SD) were calculated. LBW piglets (n = 76) were defined as weighing between (MLBW-1*SD) and (MLBW-2.5*SD). They were randomly allocated to two treatments: "sham" (conducting the act of drenching by inserting an empty 2.5 mL syringe in the mouth during 20 s, once a day, d1 till d7; n = 37) or "no treatment" (no handling; n = 39). On day 1, 3, 9, 24 and 38, piglets were weighed and scored for skin lesions. Blood samples were collected on day 9 and 38 and analyzed to determine glucose, non-esterified fatty acids (NEFA), urea, immunoglobulin G (IgG), insulin-like growth factor 1 (IGF-1) and a standard blood panel test. There was no difference between sham drenched and untreated piglets regarding any of the parameters. In conclusion, this study showed that drenching does not impose a significant risk to LBW piglets and can be applied safely during the first 7 days after birth.

19.
Front Toxicol ; 3: 804033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295145

RESUMO

Dimethyl sulfoxide (DMSO) is a popular solvent for developmental toxicity testing of chemicals and pharmaceuticals in zebrafish embryos. In general, it is recommended to keep the final DMSO concentration as low as possible for zebrafish embryos, preferably not exceeding 100 µL/L (0.01%). However, higher concentrations of DMSO are often required to dissolve compounds in an aqueous medium. The aim of this study was to determine the highest concentration of DMSO that can be safely used in our standardized Zebrafish Embryo Developmental Toxicity Assay (ZEDTA). In the first part of this study, zebrafish embryos were exposed to different concentrations (0-2%) of DMSO. No increase in lethality or malformations was observed when using DMSO concentrations up to 1%. In a follow-up experiment, we assessed whether compounds that cause no developmental toxicity in the ZEDTA remain negative when dissolved in 1% DMSO, as false positive results due to physiological disturbances by DMSO should be avoided. To this end, zebrafish embryos were exposed to ascorbic acid and hydrochlorothiazide dissolved in 1% DMSO. Negative control groups were also included. No significant increase in malformations or lethality was observed in any of the groups. In conclusion, DMSO concentrations up to 1% can be safely used to dissolve compounds in the ZEDTA.

20.
Animals (Basel) ; 12(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011160

RESUMO

The introduction of hyperprolific sows has resulted in more low birth weight (LBW) piglets, accompanied by higher mortality. A possible strategy to enhance the resilience and survival of LBW piglets is oral supplementation (drenching) of bioactive substances. This study evaluated the supplementation of bovine colostrum, short-chain fructo-oligosaccharides (scFOS) or quercetin that were dissolved separately in a milk replacer. The study was divided into two sub-experiments. First, the milk replacer was compared with a sham drenched group. Secondly, each dissolved compound was compared with the milk replacer. The LBW piglets, defined as weighing between (mean litter birth weight -1*SD) and (mean litter birth weight -2.5*SD), were randomly allocated to the different treatments and drenched once a day for seven days. On day 1, 3, 9, 24 and 38, piglets were weighed and scored for skin lesions. Blood samples were collected on day 9 and 38 and analyzed to determine glucose, non-esterified fatty acids, urea, immunoglobulin G, insulin-like growth factor 1, and a standard blood panel test. There was no difference between sham drenched piglets and piglets that were drenched with milk replacer regarding any of the parameters. No effect was observed between the milk replacer group and any of the bioactive compounds either, except a higher mortality within the scFOS group. In conclusion, this study showed that drenching the evaluated bioactive compounds, in the used dosages, did not improve LBW piglets' resilience or survival and more research is required to determine the effect of scFOS on small piglets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...